skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Torres, Hector"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The promotion of global sustainability within environmental science courses requires a paradigm switch from knowledge-based teaching to teaching that stimulates higher-order cognitive skills. Non-major undergraduate science courses, such as environmental science, promote critical thinking in students in order to improve the uptake of scientific information and develop the rational decision making used to make more informed decisions. Science, engineering, technology and mathematics (STEM) courses rely extensively on visuals in lectures, readings and homework to improve knowledge. However, undergraduate students do not automatically acquire visual literacy and a lack of intervention from instructors could be limiting academic success. In this study, a visual literacy intervention was developed and tested in the face-to-face (FTF) and online sections of an undergraduate non-major Introduction to Environmental Science course. The intervention was designed to test and improve visual literacy at three levels: (1) elementary—identifying values; (2) intermediate—identifying trends; and (3) advanced—using the data to make projections or conclusions. Students demonstrated a significant difference in their ability to answer elementary and advanced visual literacy questions in both course sections in the pre-test and post-test. Students in the face-to-face course had significantly higher exam scores and higher median assessment scores compared to sections without a visual literacy intervention. The online section did not show significant improvements in visual literacy or academic success due to a lack of reinforcement of visual literacy following the initial intervention. The visual literacy intervention shows promising results in improving student academic success and should be considered for implementation in other general education STEM courses. 
    more » « less
  2. Abstract. Wind work at the air-sea interface is the transfer of kinetic energy between the ocean and the atmosphere and, as such, is an important part of the ocean-atmosphere coupled system. Wind work is defined as the scalar product of ocean wind stress and surface current, with each of these two variables spanning, in this study, a broad range of spatial and temporal scales, from 10 km to more than 3000 km and hours to months. These characteristics emphasize wind work's multiscale nature. In the absence of appropriate global observations, our study makes use of a new global, coupled ocean-atmosphere simulation, with horizontal grid spacing of 2–5 km for the ocean and 7 km for the atmosphere, analyzed for 12 months.We develop a methodology, both in physical and spectral spaces, to diagnose three different components of wind work that force distinct classes of ocean motions, including high-frequency internal gravity waves, such as near-inertial oscillations, low-frequency currents such as those associated with eddies, and seasonally averaged currents, such as zonal tropical and equatorial jets.The total wind work, integrated globally, has a magnitude close to 5 TW, a value that matches recent estimates. Each of the first two components that force high-frequency and low-frequency currents, accounts for ∼ 28 % of the total wind work and the third one that forces seasonally averaged currents, ∼ 44 %. These three components, when integrated globally, weakly vary with seasons but their spatial distribution over the oceans has strong seasonal and latitudinal variations. In addition, the high-frequency component that forces internal gravity waves, is highly sensitive to the collocation in space and time (at scales of a few hours) of wind stresses and ocean currents. Furthermore, the low-frequency wind work component acts to dampen currents with a size smaller than 250 km and strengthen currents with larger sizes. This emphasizes the need to perform a full kinetic budget involving the wind work and nonlinear advection terms as small and larger-scale low-frequency currents interact through these nonlinear terms.The complex interplay of surface wind stresses and currents revealed by the numerical simulation motivates the need for winds and currents satellite missions to directly observe wind work. 
    more » « less
  3. null (Ed.)